davidlam

Sound Waves: The Symphony of Physics - Netflix

Written on

What is a sound? Dr Helen Czerski investigates the extraordinary science behind the ones we're familiar with, and those we can't normally hear.

Sound Waves: The Symphony of Physics - Netflix

Type: Documentary

Languages: English

Status: Ended

Runtime: 60 minutes

Premier: 2017-03-02

Sound Waves: The Symphony of Physics - Gravitational wave - Netflix

Gravitational waves are the disturbance in the fabric (“curvature”) of spacetime generated by accelerated masses and propagate as waves outward from their source at the speed of light. They were first proposed by Henri Poincaré in 1905 and subsequently predicted in 1916 by Albert Einstein on the basis of his general theory of relativity. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed)—showing one of the ways the methods of classical physics are unable to explain phenomena associated with relativity. Gravitational-wave astronomy is a branch of observational astronomy that uses gravitational waves to collect observational data about sources of detectable gravitational waves such as binary star systems composed of white dwarfs, neutron stars, and black holes; and events such as supernovae, and the formation of the early universe shortly after the Big Bang. On 11 February 2016, the LIGO and Virgo Scientific Collaboration announced they had made the first observation of gravitational waves. The observation itself was made on 14 September 2015, using the Advanced LIGO detectors. The gravitational waves originated from a pair of merging black holes. After the initial announcement the LIGO instruments detected two more confirmed, and one potential, gravitational wave events. In August 2017, the two LIGO instruments, and the Virgo instrument, observed a fourth gravitational wave from merging black holes, and a fifth gravitational wave from a binary neutron star merger. Several other gravitational wave detectors are planned or under construction. In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry Barish for their role in the detection of gravitational waves.

Sound Waves: The Symphony of Physics - Supernovae - Netflix

A supernova is a transient astronomical event that occurs during the last stellar evolutionary stages of a massive star's life, whose dramatic and catastrophic destruction is marked by one final titanic explosion. This explosion can happen in one of many ways, but in all of them a significant proportion of the matter in the star is blown away into the surrounding space at extremely high velocities (up to 10% of the speed of light). Unless there is perfect spherical symmetry in these explosions (i.e., unless matter is spewed out evenly in all directions), there will be gravitational radiation from the explosion. This is because gravitational waves are generated by a changing quadrupole moment, which can happen only when there is asymmetrical movement of masses. Since the exact mechanism by which supernovae take place is not fully understood, it is not easy to model the gravitational radiation emitted by them.

Sound Waves: The Symphony of Physics - References - Netflix